ORDERING FOR BUEHLER BOUNDS
M.F. Guerrerol and H.T. David?

1. Introduction

Buehler upper bounds for a parametric function H{6) of a discrete distribu-
tion F with finite sample space and parameter space @ are defined, for a
specified ac (0, 1), as:

b(x(k}) = sup {H(¢): F(x(k); 8)>al

where x(k) is the kth sample point in a given ordering or labeling of the
points in x . Guerrero and David (1985) established that the bounds b(x(k))
are monotone nondecreasing and that among all similarly ordered bounds for H{(e),
the Buehler bounds constitute a family of uniformly shortest ones.

In the computation of such bounds, one is faced with the initial task of
ordering the points in y . Guerrero and David (1985) illustrate how some
orderings provide more reasonable bounds than others, indicating the need for
care in the way one decides to order the sample space.

If the problem at hand is one of improving a set of upper_‘(:onfidence bounds,
say{d{x)}, that are provided by some other confidence procedure, and magnitude is
the .criterion for improvement, then one would order according to the magnitude
of “the initial bounds; i.e., Xy precedes X, whenever d(x1) < d(xz). If
this ordering provides upper Buehler bounds, then the Buehler bounds will be
‘uniformly smaller than the initial bounds. o

In some applications, a reasonable initial confidence /procedure may be
suggested by the problem at hand, and finding a suitable ofder'lng would be
tantamount to computing the bounds provided by this initial confidence
procedure.. Consider, for example, Buehler's recommended ordering for the
probilem of obtaining upper bounds for the function H(p], pz,...,pn), where
the pK's are the parameters of independent binomial variates XK. The
initial upper confidence bounds are obtained as follows: for the observation
X = (x,, Xpseses xn) let
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d(x1, x2,..., Xp) = max {pyxpax ... Xpp: 0 < px < plxg) }
where plxg) is the (1-0)1/n ypper confidence bound for px given by:
plxg) = sup {px: PROB X < xglpk} =1 - (1-a)1/0

Note that these individual upper bounds are the Buehler bounds for the
individual parameters P, based on the "natural” ordering of the sample space
{0, 1,...,nk } of Xy These upper bounds will be shown to \be the smallest
possible Buehler upper bounds for Py for the given confidence level. The
choice of {d(x)} as initial upper confidence bounds for H 1{s therefore
intuitively appealing from the point of view of bounding a function which is
monotone increasing 1in each argument by computing 1its value at the
smailest-possible upper bounds for the individual arguments.

As a general rule, one would want the smaller upper bounds to correspond to
sample points that are assigned large probability by those parameter points
which make the function H small; similarly, one would want the larger upper
bounds to correspond to sample points that are assigned large probability by the
parameter points that make H large. This indicates that any ordering rule must
take into account (i) the nature of the parametric function H and (ii) the
nature of the likelihood function of the random vector in consideration. The
1ikelihood function determines the nature of the distribution function of the
ordered sample space, which in turn determines the nature of the monotone
regions.

In the succeeding sections, we exhibit a condition under which an optimal
class of orderings, or a single optimal ordering, may be identiffed in the case
of monotone 1likelihood ratio families. We also provide a weaker sort of
“sequentially optimizing" ordering for the general finite case. Finally, we
point out that parametric functions which express the reliability of monotone
systems share, with the product function, the property that a reasonable
"initial" confidence procedure can be made to furnish an ordering.

2. Optimal Ordering Procedures
2.1 Optimality for ﬁonotone Likelihood Ratio Families
In what follows, we assume that the random variable X is scalar and takes

values in a finite sample space x = {"1’ XZ""'XN} with:

X] < X2 € .. < XN




We also assume that the parameter space is a subset of the real line. The
next three definitions are essential to the development of the optimality
criterion presented here.

Definition 1: The probability mass function f(x;6) of X is said to have
monotone 1ikelihood ratio in x if x' < x" implies that the ratio of likelihood
functions:

f(x";q)
fix ;gT
is nondecreasing 1ine.

Definition 2: Let B :

{b(x7), b(x2),..., b(xy)} and

»

B' = {b' (x]), b'(xz),..., b'(xy)} be two systems of (1~0) 100% confidence
bounds for 6 . Let

by <b2 < ... <by
and

b1'< bp' < ... <by
be, respectively, the elements of B and B' ordered by magnitude. Then B is said
to dominate B' if b, <b,' for all i.

Naturally, one would prefer not to use a system of upper bounds that is

dominated by another system.

Definition 3: A sample space ordering O corresponding to a system of upper

confidence bounds B = {b(x]), b(xz),..., b(xN)} is one that corresponds
to the magnitudes {b], b2,...,bN 1.

For example, if N = 4 and
b(xg) < blxy) = b(x3) < blx2)

|
then 0 = (x4, X]ps X3s xz) is a sample space ordering corresponding to
B. Note that 0' = (x4, X3, Xy, xz) is also a sample space ordering
corresponding to 8. This illustrates that if some of the upper bounds are
equal, then we have an equivalence class of orderings corresponding to system B.

Consider the problem of consiructing upper Buehler bounds for a real-valued
parameter § of a discrete distribution having monotone likelihood ratio. We now
derive an optimal class of orderings for this problem.

For a specified pair (x,, xj) of points in the sample space, with
X4 <xJ., define: '

8y = sup {g: flxi; g) = flxj; 0)}
if flxy; 8) = f(xj; ) for at least one 4, then gj is the last point at
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which the curves f(xi, 8) and f(xj;e) intersect. Since f(x;6) has
monotone 1ikelihood ratio, it follows that:

fxj; 8) > flxy58) 1f 6.< 645 R
flxi; 0) < flxjs 8) if o> oy; (2.1)

and

Note that if flx;; o) #flxj30) for all o, then it must be true that
flxj38) > flxg;0) for all 6.

Theorem: Suppose f(x;g) has monotone 1ikelihood ratio in x. Let
(x,l, xj) be any pair of sample points for which x; < X; and f(x;; @)
= f(xj; 8) for some 8. Suppose that for a system B of (1-a)100% upper
confidence bounds for 6, an ordering O corresponding to B places xJ before
X;. Let B* be a Buehler system for 6. Also, let B** be a Buehler system of
upper bounds for an ordering 0' derived from O by fnterchanging the positions of

X; and X5e If f(xi; eij) > a, then B** dominates B*.

Proof: Let {bl*’ bz*,..., bN*} and {b]**, bz**,..., bN**},
denote the wupper Buehler bounds ordered by magnftude 1in B* and B**,
respectively.  Suppose X; is in the kth position and Xy is in the mth
position (k < m) with respect to ordering 0. Then,

by* = by** for 1 <k and 1 >m.

We now show that for k< 1 <m, by* < b*. Let x be a point in any one

of these positions. Then the distribution function at x under 0 and 0' are,

respectively:
F(x; 8) = G(g) + f(xj; 8)

and )

F'ix;e) = Gle) + fx;;0)

where G(g) is the sum of the likelihood functions of sample points that are in
position 1 through k-1 and k+1 through 1. Hence, for k < 1 <m

by* = sup {6:F(x;8) > a}
and

by** = sup {8: F'(x;6) >a }
Since f(xj; eij) > a, it follows that F(x; eij” aand F'(x; °1j)> a -
Hence, both b]* and b1** must be greater than or equal to
Furthermore, (2.1) implies that:

F(x;8) F'(x,g) fore> 64ij
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and it follows that by** < by*. Q.E.D.

The following corollaries are immediate consequences of the preceding
theorem. They establish that Buehler upper bounds for the parameter of a
discrete distribution that has monotone likelihood ratio obtained under certain

classes of orderings will dominate those obtained under orderings outside these

optional classes.

Corollary 1: Suppose f(x; 6) has monotone ratio in x. Let (xi, xJ.) be
two sample points for which x; < X; and  flxy; 8) = f(xj; 8) for at
least one 6 . Suppose f(xi; eij) > o, Then, the orderings that order pairs
(x,,, xj) satisfying these properties in the natural way form a complete
class.

Corollary 2: Su'ppose f(x; 98) has monotone likelihood ratio in x. If
flxy; eij)> o for all pairs (x,, xJ.) for which x; <x; and flx;s0) = f(xi'; 8) for
at least nne 8, then the set of natural orderinos forr a c‘omp'lete

class. . )
Since the binomial density has monotone likelihood ratio, if o is such

that  fix;; p.,j) > for all pairs (x;; xj) then, Corollary 2 establishes
that the quantities:

ulk) = sup { p: PROB [ X <klp =0}
for k = 0, 1,..., n are the smallest-possible (1-¢)100% upper Buehler bounds
for the binomial parameter p. Furthermore,

1K) = inf {(1 - p): PROB |X < k|n_| =

for k = 0, 1,..., n provides the largest-possible (1-a)100% lower Buehler
bounds for p.

In the next section, we propose a generally applicable ordering suggested by
and specializing to the optimal natural ordering for exp(')nerll‘tia1 families, which
guarantees a certain weaker sequential type of optimality. '

2.2 A Sequentially Optimizing Ordering

A reasonable requirement to impose in obtaining upper Buehler bounds for a
parametric function H is that, to the extent it is possible, the upper bounds
b(x(”) should be as small as possible for all x“). To ensure that this is
true for 1 =1, we would want to minimize the function:

P1{x) = sup {H(8): (x; 8) > a}

where f(x; 8) is the likelihood function of the random vector X, over the sample
space x = {Xl, Xoseees xN}. Suppose x .= ) solves this minimization
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problem. Then to find the second smallest-possible upper bound for H given

. that yy {s the first point in the ordering, we would minimize the function:

pa(x) =Tup H(8): flyy; 8) + f(x;8) > a}

over the set x- y;. let y, denote a solution to this minimization
problem. To find the ith smallest-possible Buehler upper bound, we proceed
sequentially, as follows: given that Yo Yopseeen ¥4 provide the first,
second,..., (i-1)st smallest-possible Buehler upper bounds for H, the ith
smallest-possible Buehler upper bounds is obtained by minimizing the function:

pi(x) = sup {H(8); jEi fly;:0 ) + f(x; 8) > a}
over the set ¥ - {y1, y2,..., ¥i-1} -

By construction, the ordering of the sample space provided by this

sequential procedure has x“) =y; and provides a set of smallest-possible

Buehler upper bounds for each i.

3. An Application: Confidence Bounds for Reliability Functions of

Monotone Systems
3.1 Background '

Consider a system with n components where each of the components assumes two
states: a functioning state or a failed state. Let Py denote the probability
t.'at the ith component is in its functioning state. If the system has monotonic
structure, then its reliability function, to be denoted by H(p], Pyseses pn), is
nondecreasing in each p;. '

Suppose that for component k, " independent bernouylli trials are observed
and X, successes are recorded. If data for each component are independently
obtafned, then the observations (x‘, Xgaeees xn) are values of the random
vector X = (X], Xpseees Xn) where the Xk's are independent binomial (n,, pk)
variables.

For various kinds of systems, many researchers have proposed different
ordering functions. A natural choice would be a point estimator for H(p). For
the reliability function of a series system, for example, the maximum 1ikelihood
estimator H(p) = p; (x;/ny) and certain modifications of it have been
suggested. However, most of the results have been geared towards obtaining
procedures which have the Buehler optimality property asymptotically but not
necessarily for any fixed sample size. Easterling's (1972) modified maximum
1%kelihood method and Madansky's (1965) 1linearization method provide an
i1lustration of this approach. Epstein (1967} considered the problem of
‘confidence sets for the product of two binomial parameters and considered the
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two ordering functions:

g1(x) = xyx2/n1nz

and

ga(x) = (xy + 1){xp + 1)/nmnz

and concluded that the second was preferable to the first, since the partition®
of the sample space induced by the second is finer than that induced by the
first. .

In what follows, we present a confidence procedure for the reliability
function of monotone systems. The procedure is based on binomial attribute data
collected from life tests on the components of the system and we will establish
that it is optimal in a certain class.

3.2 A Confidence Procedure for the Reliability Fumction of Monotone Systems

A reasonable set of easily computed (1-)100% upper confidence bounds for
the reliability function H of a monotone system is provided by the construction:

d{xy, x2,..., xn) = max {H(p): px < Pk < Pk } (3.1)
where [px, T | is @ (1-a)1/n  two-sided confidence interval for py.
1Pks BR_ ke

Since H is nondecreasing in each argument, its maximum over a cartesian
product of intervals Ijk, Ek] is attained at the upper bounds p, of each
argument. Hence, upper bounds for H would be small in magnitude if the upper
bounds Py are small. Consider the .lass of confidence procedures for H that
utilize functions of the form defined in (3.1). Then, for a specified
confidence level, those procedures which use one-sided upper intervals [0', 5k:|
for eacn parameter would provide upper bounds for H that are smaller than those
obtained under procedures that use two-sided intervals. Now, suppose the
Buehler upper bounds for py:

b(x) = sup {px: PROB [Yg < xy/pk =1 - (1-0)1/ )

are employed in the construction defined by the function d{-). Since these
individual Buehler upper bounds are optimally shortest, the upper bounds for H
provided by d would then have the appealing property that they are smallest
among all upper bounds for H obtained over cartesian product regions |—-Ek’ Bk] In
the sense of Pavlov (1977 a and 1977b), these bounds are locally optimal and
admissible. On the basis of these properties and the ease of computation, these
upper bounds would be our recommendation for ordering the sample space for upper
Buehler bound construction.
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